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Abstract

We give a covariant treatment of the quadratic differential identities satisfied by
the ℘-functions on the Jacobian of smooth hyperelliptic curves of genus �3.
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1. Introduction

A classical problem in the theory of a planar (n, s) algebraic curve is a description of the
differential equations satisfied by meromorphic, multiply periodic functions defined on its
Jacobian variety. In the genus g hyperelliptic case (n = 2, s = 2g + 2) the field of such
functions is entirely described in terms of certain ℘ij functions which generalize the Weierstrass
℘-function on the elliptic curve, the genus-one case.

The derivation of these identities has been a major concern over the last 10–15 years and
many results have been published; see [8, 10, 11] for seminal literature.

The aim of this paper is to promote a new methodology which considerably simplifies the
derivation and presentation of these identities by utilizing elementary representation theory.
The fundamental observation is that the underlying algebraic curves belong to generic families
permuted under an sl2 action. This can be interpreted [2, 3] as a covariance property that
translates into covariance of the ℘-function identities. This means that each polynomial
identity between derivatives of the ℘-function belongs to a finite-dimensional representation
of sl2, the knowledge of which depends only upon a highest weight element. It is only necessary
to find these highest weight identities to generate the other identities in the representation.

However, a requirement of this approach is that we develop the theory for the generic
member of the family of curves. This is in contrast to former treatments where a simpler,
normal form is exploited by moving a branch point to infinity, i.e. removing the highest degree
term.

The only case where the covariant equations are written is for genus-two hyperelliptic
curves by Baker [5]. He achieves this by establishing the equations for the curve in normal
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form and then undoing the ‘normalizing’ transformation’s effect on the identities. Even so he
finds it necessary to introduce a ‘fudge factor’ to restore full covariance.

This ‘fudge factor’ points to another problem. Not only must the curve be in general
position but the fundamental (Kleinian) definition of the ℘-function [5–8] must itself be
rendered covariant. This problem reasserts itself in the next highest genus and the Baker
equations for the genus-three curve [6] are nowhere written in covariant form.

The same issues occur in purely algebraic treatments, that of Cassels and Flynn for
instance [9]. The formulation of their approach, important for curves over general fields, can
also be rendered covariant and will be discussed in another publication. In this paper we work
entirely over C.

In this respect a note on the approach of the papers [2, 3] by the present author and
collaborators is in order. What was attempted in those papers was a radically different
approach to the analytic theory based on a very simple definition of the ℘-function, quite
different to Klein’s but with some philosophical proximity to that of [9]. However, whilst
this was an effective approach to genus two, attempts so far to extend it to higher genus have
foundered on finding the corresponding, simple definition of the ℘-function.

The programme of the current paper is, therefore, firstly to define the ℘-function in a
covariant way and secondly to derive the identities it satisfies by combining the traditional
technique of expansion about a chosen point with the Lie algebraic representation theory. We
do this for genera one, two and three to recover known sets of differential equation or their
equivalents. The emphasis is placed on the methodology.

The results so obtained are rather beautiful generalizations of the formulae found in [6–8].
Most of all we obtain a covariant bordered determinantal form of the set of quadratic identities
in the ℘ijk for genus two, familiar from Baker’s work [7], and a new generalization of this
formula to the genus-three case involving a doubly bordered determinant. These quadratic
relations should presumably be regarded as the most fundamental differential identities and it
is a positive feature of the covariant machinery that it produces them in a systematic manner
at the simplest level.

2. Lie algebraic operations

Curves of the form

v(x, y; a0, . . . , a2g+2)) = y2 −
2g+2∑
i=0

(
2g + 2

i

)
aix

i = 0 (2.1)

are generically hyperelliptic and of genus g, that is, unless some special relations obtain
between the coefficients.

The family of such curves is permuted under transformations given by

x �→ X = αx + β

(γ x + δ)
, (2.2)

y �→ Y = y

(γ x + δ)g+1
, (2.3)

where

αδ − βγ = 1,

2
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mapping the above curve into

V (X, Y ;A0, . . . , A2g+2) = Y 2 −
2g+2∑
i=0

(
2g + 2

i

)
AiX

i = 0 (2.4)

with Ai being functions of the ai and the parameters α, β, γ and δ.
This can be restated as infinitesimal covariance conditions,

ev(x, y; a0, . . . , a2g+2) = 0 (2.5)

fv(x, y; a0, . . . , a2g+2) + 2(g + 1)xv(x, y; a0, . . . , a2g+2) = 0, (2.6)

where the generators e and f are given by

e = ∂x −
2g+2∑
i=0

(2g + 2 − i)ai+1∂ai
(2.7)

f = −x2∂x − (g + 1)xy∂y −
2g+2∑
i=0

iai−1∂ai
(2.8)

h = −2x∂x − (2g + 2)y∂y −
g+1∑
i=0

iai∂ai
. (2.9)

These generators satisfy the sl2 commutation relations,

[h, e] = 2e, [h, f] = −2f, [e, f] = h. (2.10)

The coefficients a0, a1, . . . , a2g+2 are a basis for a 2g + 3 dimensional representation.
The space of holomorphic differentials on the curve is spanned by the set{

xi−1 dx

y

∣∣∣∣i = 1, . . . , g

}

and the symmetric sums of each of these differentials taken over g copies of the curve

dui =
g∑

j=1

xi−1
j dxj

yj

(2.11)

are a basis for holomorphic 1-forms on the Jacobian variety of the curve.
One checks the following action of sl2:

e dui = (i − 1) dui−1 (2.12)

f dui = (g − i) dui+1 (2.13)

and it then follows that

e∂ui
= −i∂ui+1 (2.14)

f∂ui
= −(g − i + 1)∂ui−1 . (2.15)

3
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3. Covariant Klein relations

Our starting point will be the Kleinian definition of the doubly indexed ℘ functions: ℘ij = ℘ji

[8]. The indices are to be thought of as derivatives with respect to the variables ui . There are
thus integrability conditions of the form

℘ij,k = ℘ik,j = ℘kj,i ∀ i, j, k. (3.1)

For the moment we think of these objects purely as indexed symbols satisfying algebraic
rules of differentiation and a set of identities to be specified shortly. However they are not
traditionally defined in a covariant manner, that is in a way that respects the further relations
following from (2.14), namely

e℘ij = −i℘i+1j − j℘ij+1 (3.2)

f℘ij = −(g − i + 1)℘i−1j − (g − j + 1)℘ij−1. (3.3)

In order to proceed we need to adjust the fundamental definition by adding correction
terms without destroying the fundamental singularity properties of the ℘ij .

How to do this is best seen by example and we explain it now for the genus-two case.
The classical definition in genus two assumes a normal form with branch point at infinity,

a6 = 0, a5 = 2
3 , and is

℘11 + (xi + x)℘12 + xxi℘22 = F(x, xi) − yyi

4(x − xi)2
, (3.4)

where i = 1, 2 and ℘ is a function of the argument
∫ x du +

∫ x1 du +
∫ x2 du, u = (u1, u2). The

function F(x, xi) is the classical polar form

F(x, xi) = 2(x + xi)x
2x2

i + 15a4x
2x2

i + 10a3(x + xi)xxi + 15a2xxi + 3a1(x + xi) + a0. (3.5)

For the generic case one must clearly reinstate the coefficients a6 and a5 but this alone
is not enough to render the equation covariant which, in this case means invariant, it being a
single relation.

The left-hand side becomes invariant on dividing by x − xi since both

(℘11,−2℘12, ℘22)

and

X3 =
(

2xxi

x − xi

,− x + xi

x − xi

,
2

x − xi

)
are three-dimensional representations. Note that xi here can be either choice from x1 and x2.

On the right-hand side the ratio yyi

(x−xi )3 is now also seen to be invariant but F(x,xi )

(x−xi )3 is not.
Note however that there is a seven-dimensional representation

X7 =
(

6

(x − xi)3
,− 3(x + xi)

(x − xi)3
,

3
(
x2 + 3xxi + x2

i

)
(x − xi)3

,−
(
x3 + 9x2xi + 9x2

i x + x3
)

(x − xi)3
,

× 3
(
x2 + 3xxi + x2

i

)
xxi

(x − xi)3
,−3(x + xi)x

2x2
i

(x − xi)3
,

6x3x3
i

(x − xi)3

)
, (3.6)

which, when taken with the coefficients a0,−a1, a2,−a3, a4,−a5, a6, gives an invariant. This
modification does not alter the fundamental requirement that in the limit x → xi, y → yi the
℘ij are regular but have poles of order 2 when x → xi, y → −yi [9]. Hence our modified
definition is

℘11X3
2 + ℘12X3

1 + ℘22X3
0 = F̃ (x, xi) − yyi

2(x − xi)3
, (3.7)

4
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where
F̃ (x, xi)

(x − xi)3
= a0X7

6 + a1X7
5 + a2X7

4 + a3X7
3 + a4X7

2 + a5X7
1 + a6X7

0 (3.8)

is a covariant ‘polar’ form.
The corresponding generalizations for other genera are straightforward and depend on

constructing 2g + 3 dimensional representations, X2g+3, by taking highest weight elements
(x − xi)

−(g+1) for e and applying f successively, with appropriate normalizations.
Thus, for instance, for genus one we write

℘11 = F̃ (x, xi) − yyi

2(x − xi)2
(3.9)

where, using X5,

F̃ (x, xi) = a0 + 2a1(x + xi) + a2
(
x2 + xxi + x2

i

)
+ a3(x + xi)xxi + a4x

2x2
i . (3.10)

The covariant polar form stands in a geometric relation to the hyperelliptic curve
y2 − ∑2g+2

i=0

(2g+2
i

)
aix

i of degree g + 2 not shared by the traditional polar form, namely
the curve yyi − F̃ (x, xi) = 0 of degree g + 1 is tangent to order g + 1 to the hyperelliptic curve
at the common point (xi, yi).

For the calculations which follow we put the defining relations into the convenient form

yyi − xt hxi = 0, (3.11)

where h is a (g + 2) × (g + 2) matrix whose entries depend only upon the ai and the ℘ij . The
x’s are g + 2-vectors of monomials, e.g.,

xt = (1, x, x2, . . . , xg, xg+1). (3.12)

4. Differential relations in genus one

Here we give a new, covariant treatment of the most classical case of all: the Weierstrass
℘-function.

Covariance of the quartic curve

y2 = a0 + 4a1x + 6a2x
2 + 4a3x

3 + a4x
4 (4.1)

under sl2(C) requires

e(x) = 1 e(y) = 0 f(x) = −x2

f(y) = −2xy e(ai) = −(4 − i)ai+1 f(ai) = −iai−1.

There is only one holomorphic differential on the curve: du1 = dx
y

and it is clear that

e(du1) = 0 f(du1) = 0,

so that ℘11, ℘111, etc are all invariant.
Even for this, the simplest case, it is necessary to make the Klein definition covariant

before we start by using X5 as at the end of the last section. We apply the fundamental
definition of Klein [8] written in the form

yy1 − xt hx1 = 0, (4.2)

where x = (1, x, x2), x1 = (
1, x1, x

2
1

)
but where h is now the covariantly modified, three-by-

three matrix

h =
⎡
⎣ a0 2a1 a2 − 2℘11

2a1 4a2 + 4℘11 2a3

a2 − 2℘11 2a3 a4

⎤
⎦ . (4.3)

5
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Note that in terms of entries of h,

y2 = a(x)

= h33x
4 + (h32 + h23)x

3 + (h31 + h22 + h13)x
2 + (h12 + h21)x + h11

each coefficient being independent of the ℘11 symbol.
Take the residue of (4.2) at x = ∞, y = √

h33
(
x2 + h32

h33
x + · · · ),

√
h33y1 − h31 − h32x1 − h33x

2
1 = 0. (4.4)

The two index symbol ℘11 is [8] a function of x and x1 in the form

℘11 = ℘11

(∫ x

du +
∫ x1

du

)
. (4.5)

Hence the effect of the operator y∂x = ∂u1 , etc on ℘11 is

y∂x℘11 = ℘111 (4.6)

y1∂x1℘11 = ℘111. (4.7)

Now apply y∂x to the Klein relation (4.2),

yy ′y1 − yx′t hx1 = xt
(
∂u1h

)
x1. (4.8)

Use of the defining relation allows us to replace yy1 to give

(y ′xt − yx′t )hx1 = xt
(
∂u1h

)
x1. (4.9)

The highest order term using y = √
h33

(
x2 + h32

h33
x + · · · ) yields

h33(hx1)2 − h23(hx1)3 =
√

h33
(
∂u1hx1

)
3, (4.10)

where we have used subscripts (·)2 and (·)3 to denote the second and third components of a
vector quantity.

Explicitly we have the identity∣∣∣∣h12 h13

h23 h33

∣∣∣∣ +

∣∣∣∣h22 h23

h32 h33

∣∣∣∣ x1 + 2
√

h33℘111 = 0.

The same identity arises if we differentiate the Klein relation with respect to x1.
So far then y1 is given by a quadratic in x1, linear in ℘11, and ℘111 by a relation linear in

x1 and ℘11. One further relation is afforded by the fact that (x1, y1) lies on the curve. Using
expression (4.4) for y1 this becomes∣∣∣∣h22 h23

h32 h33

∣∣∣∣ x2
1 + 2

∣∣∣∣h12 h13

h32 h33

∣∣∣∣ x1 +

∣∣∣∣h11 h13

h31 h33

∣∣∣∣ = 0. (4.11)

We now eliminate x1 between this quadratic relation and the preceding linear expression
for ℘111. We obtain

℘2
111 = −1

4

∣∣∣∣∣∣
h11 h12 h13

h21 h22 h23

h31 h32 h33

∣∣∣∣∣∣ . (4.12)

Identifying as customary the classical ℘-function with ℘11 and its derivative, ℘ ′, with
℘111 we have, expanding the determinant, the equation for the ℘-function for the generic curve
of genus one,

℘ ′2 − 4℘3 = −(
a0a4 − 4a1a3 + 3a2

2

)
℘ − a0a2a4 + a0a

2
3 − 2a1a2a3 + a3

2 + a2
1a4.

6
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4.1. Remarks

4.1.1. The coefficients a0a4 − 4a1a3 + 3a2
2 and −a0a2a4 + a0a

2
3 − 2a1a2a3 + a3

2 + a2
1a4 are

readily verified to be invariants under the sl2(C) action. This is only to be expected from
the classical approach. They sit inside the two-fold and three-fold tensor products of the
five-dimensional representation spanned by {a0, a1, a2, a3, a4}.

4.1.2. Specializing to the case where one branch point is moved to ∞, we take a4 = 0. By
shifting x we can set a2 = 0 and by scaling, set a3 = 1,

℘ ′2 = 4℘3 + 4a1℘ + a0.

Traditionally one associates this curve with the cubic

y2 = 4x3 + 4a1x + a0

parametrized by setting x = ℘ and y = ℘ ′ but we see that in fact the origin of the factor of 4 on
the left-hand side is not at all related to the value of a3. It is rather an intrinsic value that holds
for the generic curve. We could of course solve the relations obtained in the previous section
to obtain x1 and y1 as functions of ℘11, ℘111 and the ai in order to parametrize the generic
quartic, y2 = a(x). This parametrization looks, at first sight, rather unattractive although it
reduces to the classical one when the branch point is moved to ∞.

4.1.3. The generic differential equation for the ℘-function above is actually what for higher
genus would be called a quadratic identity. Consequently, the coefficients in the differential
equation are polynomial in the ai and not linear.

4.1.4. Why is life more complicated for higher genus? Simply because the ℘ij are now
a 1

2g(g + 1)-dimensional (not, in general, irreducible) representation and so their relations
cannot be constructed solely from invariant quantities.

5. Differential relations in genus two

The fundamental definition of Klein can be modified to the form

yyi − xhxT
i = 0 (5.1)

for i = 1, 2, where x = (1, x, x2, x3), xi = (
1, xi, x

2
i , x

3
i

)
and h is the covariant four-by-four

matrix

h =

⎡
⎢⎢⎣

a0 3a1 3a2 − 2℘11 a3 − 2℘12

3a1 9a2 + 4℘11 9a3 + 2℘12 3a4 − 2℘22

3a2 − 2℘11 9a3 + 2℘12 9a4 + 4℘22 3a5

a3 − 2℘12 3a4 − 2℘22 3a5 a6

⎤
⎥⎥⎦ . (5.2)

Note that in terms of entries of h,

y2 = a(x)

= h44x
6 + (h34 + h43)x

5 + (h24 + h33 + h42)x
4

+ (h14 + h23 + h32 + h41)x
3

+ (h13 + h22 + h31)x
2 + (h12 + h21)x + h11

each coefficient being independent of the ℘ij symbols.

7
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Take the residue of (5.1) at x = ∞, y = √
h44

(
x3 + h34

h44
x2 + · · · ),

√
h44y1 − h41 − h42x1 − h43x

2
1 − h44x

3
1 = 0. (5.3)

The two index symbols, ℘ij are [8] functions of x, x1 and x2 in the form

℘ij = ℘ij

(∫ x

du +
∫ x1

du +
∫ x2

du

)
. (5.4)

Hence the effect of the operators y∂x = ∂u1 + x∂u2 , etc on the ℘ij is

y∂x℘ij = ℘ij1 + x℘ij2 (5.5)

y1∂x1℘ij = ℘ij1 + x1℘ij2 (5.6)

y2∂x2℘ij = ℘ij1 + x2℘ij2. (5.7)

Apply y2∂x2 to the Klein relation (5.1) with i = 1. By elementary algebra it reduces, for
all x, to the form

−2(x − x1)
2 (A + xB) = 0, (5.8)

where A and B are functions of x1, x2 and the ℘ijk . As there can be no relation linear in x
between these objects [5], both the coefficients A and B must vanish,

℘111 + (x1 + x2)℘112 + x1x2℘122 = 0

℘112 + (x1 + x2)℘122 + x1x2℘222 = 0.
(5.9)

Now apply y∂x to the Klein relation (5.1) with i = 1,

yy ′y1 − yx′hxT
1 = x

(
∂u1h + x∂u2

)
xT

1 . (5.10)

Use of the defining relation allows us to replace yy1 to give

(y ′xT − yx′T )hxT
1 = x

(
∂u1h + x∂u2

)
xT

1 . (5.11)

Using y = √
h44

(
x3 + h34

h44
x2 + · · · ), the highest order term yields

h44
(
hxT

1

)
3 − h34

(
hxT

1

)
4 =

√
h44

(
∂u2hxT

1

)
4, (5.12)

where again we have used subscripts (·)i to denote ith components of a vector quantity.
Explicitly we have a quadratic identity∣∣∣∣h31 h34

h41 h44

∣∣∣∣ +

∣∣∣∣h32 h34

h42 h44

∣∣∣∣ x1 +

∣∣∣∣h33 h34

h43 h44

∣∣∣∣ x2
1 + 2

√
h44(℘122 + x1℘222) = 0. (5.13)

By the general symmetry of the problem the same identity must be satisfied by x2. Thus
we can obtain expressions for the symmetric combinations x1 + x2 and x1x2, namely

2
√

h44℘222 = −
∣∣∣∣h32 h34

h42 h44

∣∣∣∣ −
∣∣∣∣h33 h34

h43 h44

∣∣∣∣ (x1 + x2) (5.14)

2
√

h44℘122 = −
∣∣∣∣h31 h34

h41 h44

∣∣∣∣ +

∣∣∣∣h33 h34

h43 h44

∣∣∣∣ x1x2. (5.15)

Eliminating these symmetric combinations from the second of the pair (5.9) we obtain
the relation ∣∣∣∣∣h33℘112 − h32℘122 + h31℘222 h34

h43℘112 − h42℘122 + h41℘222 h44

∣∣∣∣∣ = 0

8
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from which it follows that

h33℘112 − h32℘122 + h31℘222 = λh34 (5.16)

h43℘112 − h42℘122 + h41℘222 = λh44, (5.17)

with λ being some constant to be determined.
All the elements of these identities belong to irreducible representations of sl2 and it is

easy to show that the identities are mutually self-consistent under the Lie algebra action if λ is
identified with ℘111. They then form two of a multiplet of four identities (a four-dimensional
representation of sl2) summarized in matrix form as⎛

⎜⎜⎝
h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

h41 h42 h43 h44

⎞
⎟⎟⎠

⎛
⎜⎜⎝

℘222

−℘122

℘112

−℘111

⎞
⎟⎟⎠ = 0. (5.18)

An immediate consequence of this is the relation for the Kummer surface, quartic in
the ℘ij ,

det(h) = 0. (5.19)

But, more than this, it follows (we do not give the argument here because it is a
simplification of that leading up to equation (6.24) for the genus-three case) straightforwardly
from (5.18) and the theory of diagonalization of the symmetric matrix h that if we define the
bordered matrix,

H =

⎛
⎜⎜⎜⎜⎝

h11 −h12 h13 −h14 l0

−h21 h22 −h23 h24 l1

h31 −h32 h33 −h34 l2

−h41 h42 −h43 h44 l3

l0 l1 l2 l3 0

⎞
⎟⎟⎟⎟⎠ (5.20)

then det(H) is, up to a factor, the expression (l0℘222 + l1℘122 + l2℘112 + l3℘111)
2.

That this factor is, in fact, − 1
4 could be established by the classical argument of singularity

balancing between the leading terms, quadratic in the ℘ijk and cubic in the ℘ij . However it is
instructive and in keeping with the current, purely algebraic, philosophy to establish the result
by using the relation arising by application of y1∂x1 to the Klein relation (5.1) for i = 1.

Immediately we have

yy1y
′
1 − x

(
∂u1h + x1∂u2h

)
x1

T − y1xhx′
1
T = 0. (5.21)

Replacing y1y
′
1 by 1

2a′(x1), taking the x = ∞ residue of

1
2ya′(x1) − y1xhx′

1
T = x

(
∂u1h + x1∂u2h

)
x1

T (5.22)

and by elimination of y1 as before, we find
1
2

((
hxT

1

)2
4 − h44a(x1)

)′ = 2
√

h44
(
℘112 + 2℘122x1 + ℘222x

2
1

)
,

prime denoting differentiation with respect to x1, that is, we ignore the implicit x1 dependence
of the ℘ij . In fact the right-hand side of this equation is easily seen to be cubic in x1 and not,
as at first sight it appears, quintic. Exploiting the symmetry of h gives us
√

h44(℘112 + 2℘122x1 + ℘222x
2
1) +

∣∣∣∣h33 h34

h43 h44

∣∣∣∣ x3
1 +

3

2

∣∣∣∣h23 h24

h43 h44

∣∣∣∣ x2
1

+

(∣∣∣∣h13 h14

h43 h44

∣∣∣∣ +
1

2

∣∣∣∣h22 h24

h42 h44

∣∣∣∣
)

x1 +
1

2

∣∣∣∣h12 h14

h42 h44

∣∣∣∣ = 0. (5.23)

9
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It is straightforward to eliminate (5.13) from the above to leave a second quadratic identity

2
√

h44
(
℘112 − ℘222x

2
1

)
+

∣∣∣∣h23 h24

h43 h44

∣∣∣∣ x2
1 +

∣∣∣∣h22 h24

h42 h44

∣∣∣∣ x1 +

∣∣∣∣h12 h14

h42 h44

∣∣∣∣ = 0.

Again, eliminating x2
1 between this and (5.13) provides a relation of degree 1 in x1. Since

xi can satisfy nothing simpler than quadratic relations the coefficient of x1 and the constant
term must be identically zero. The first is

4h44℘
2
222 =

∣∣∣∣h32 h34

h42 h44

∣∣∣∣
∣∣∣∣h23 h24

h43 h44

∣∣∣∣ −
∣∣∣∣h33 h34

h43 h44

∣∣∣∣
∣∣∣∣h22 h24

h42 h44

∣∣∣∣ (5.24)

and by a well-known identity for 3 × 3 determinants [1],

−4℘2
222 =

∣∣∣∣∣∣
h22 h23 h24

h32 h33 h34

h42 h43 h44

∣∣∣∣∣∣ . (5.25)

This allows us to fix the value of the constant of proportionality and we obtain a beautiful,
covariant generalization of Baker’s formula [7]

(l0℘222 + l1℘122 + l2℘112 + l3℘111)
2 = −1

4

∣∣∣∣∣∣∣∣∣∣

h11 −h12 h13 −h14 l0

−h21 h22 −h23 h24 l1

h31 −h32 h33 −h34 l2

−h41 h42 −h43 h44 l3

l0 l1 l2 l3 0

∣∣∣∣∣∣∣∣∣∣
.

For later comparison we change the sign of l1 and l3,

(l0℘222 − l1℘122 + l2℘112 − l3℘111)
2 = −1

4

∣∣∣∣∣∣∣∣∣∣

h11 h12 h13 h14 l0

h21 h22 h23 h24 l1

h31 h32 h33 h34 l2

h41 h42 h43 h44 l3

l0 l1 l2 l3 0

∣∣∣∣∣∣∣∣∣∣
.

In section 7, we will derive identities linear in the ℘ij and ℘ijk from the above quadratic
identities. Presumably all ℘-function identities arise from these quadratic ones by algebraic
and differential processes but, of course, this is not immediately clear. Nor is it immediately
essential to their application in this paper.

6. Differential relations in genus three

The last section recovers classical results in that the covariant identities were written in [7]
though not there derived in a covariant manner. By contrast a covariant treatment of higher
genus hyperelliptic (or non-hyperelliptic) curves has not been given before. This we now do.

For genus three we have three covariant Klein equations:

yyi − xhxT
i = 0 (6.1)

for i = 1, 2, 3, where x = (1, x, x2, x3, x4), xi = (
1, xi, x

2
i , x

3
i , x

4
i

)
and h is the 5 × 5 matrix,⎡

⎢⎢⎢⎢⎣
a0 4a1 6a2 − 2℘11 4a3 − 2℘12 a4 − 2℘13

4a1 16a2 + 4℘11 24a3 + 2℘12 16a4 − 2℘22 + 4℘13 4a5 − 2℘23

6a2 − 2℘11 24a3 + 2℘12 36a4 + 4℘22 − 4℘13 24a5 + 2℘23 6a6 − 2℘33

4a3 − 2℘12 16a4 − 2℘22 + 4℘13 24a5 + 2℘23 16a6 + 4℘33 4a7

a4 − 2℘13 4a5 − 2℘23 6a6 − 2℘33 4a7 a8

⎤
⎥⎥⎥⎥⎦ .

10
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The residue of (6.1) at x = ∞, y(x) = √
h55x

4 + h45+h54

2
√

h55
x3 + · · · gives

√
h5,5yi − (

hxT
i

)
5 = 0, (6.2)

for i with value 1, 2 or 3.
This time the operator y∂x and its indexed relatives is given by ∂u1 + x∂u2 + x2∂u3 , etc. We

may apply y2∂x2 to (6.1) with i = 1 and take the residue at x = ∞ to obtain((
∂h

∂u1
+ x2

∂h

∂u2
+ x2

2
∂h

∂u3

)
xT

1

)
5

= 0. (6.3)

Simplifying, removing overall factors of x1 − x2, gives

℘113 + (x1 + x2)℘123 + x1x2℘223 +
(
x2

1 + x2
2

)
℘133 + (x1 + x2)x1x2℘233 + x2

1x2
2℘333 = 0 (6.4)

and, by cyclic interchange of the xi ,

℘113 + (x2 + x3)℘123 + x2x3℘223 +
(
x2

2 + x2
3

)
℘133 + (x2 + x3)x2x3℘233 + x2

2x2
3℘333 = 0 (6.5)

℘113 + (x3 + x1)℘123 + x3x1℘223 +
(
x2

3 + x2
1

)
℘133 + (x3 + x1)x3x1℘233 + x2

3x2
1℘333 = 0. (6.6)

From these three identities we can form three identities whose coefficients are symmetric
functions in the xi , namely

℘223 − ℘133 + s(1)℘233 + s(2)℘333 = 0 (6.7)

℘123 + s(1)℘133 − s(3)℘333 = 0 (6.8)

℘113 − s(2)℘133 − s(3)℘233 = 0, (6.9)

where s(1) = x1 + x2 + x3, s
(2) = x1x2 + x2x3 + x3x1 and s(3) = x1x2x3.

An important observation at this point is that these three equations are overdetermined
for s(1), s(2) and s(3) so that the ℘ijk must satisfy the quadratic identity

℘113℘333 − ℘123℘233 + ℘223℘133 − ℘2
133 = 0. (6.10)

This relation is in the kernel of e and thus is a highest weight element for a set of relations
forming a five-dimensional representation

P5(0) = ℘113℘333 − ℘123℘233 + ℘223℘133 − ℘2
133

P5(1) = −℘233℘113 − ℘112℘333 − ℘133℘222 + 2℘133℘123 + ℘233℘122

P5(2) = ℘133℘122 − ℘133℘113 − ℘223℘122 + ℘223℘113 + ℘111℘333 + ℘123℘222 − 2℘2
123

P5(3) = −℘233℘111 − ℘112℘133 + ℘112℘223 − ℘113℘222 + 2℘113℘123

P5(4) = −℘123℘112 + ℘113℘122 − ℘2
113 + ℘133℘111.

This gives a set of five identities quadratic in the ℘ijk, P5(i) = 0 for i = 0, . . . , 4.

Differentiating (6.1) with respect to y∂x ,

(y ′(x)x − y(x)x′)hxT
1 = x

(
∂h

∂u1
+ x

∂h

∂u2
+ x2 ∂h

∂u3

)
xT

1 (6.11)

we again use the expansion near x = ∞,

y(x) =
√

h55x
4 +

h45 + h54

2
√

h55

x3 + · · ·

11
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collecting the highest order term (degree 6) in the identity just obtained. Thus, using the
symmetry of the matrix h,∣∣∣∣

(
hxT

1

)
4

(
hxT

1

)
5

h54 h55

∣∣∣∣ =
(

∂h

∂u3
xT

1

)
5

. (6.12)

This is an identity cubic in x1 also satisfied by x2 and x3,∣∣∣∣h44 h45

h54 h55

∣∣∣∣ x3
i +

∣∣∣∣h34 h35

h54 h55

∣∣∣∣ x2
i +

∣∣∣∣h24 h25

h44 h55

∣∣∣∣ xi +

∣∣∣∣h14 h15

h54 h55

∣∣∣∣
+ 2

√
h55

(
℘133 + xi℘233 + x2

i ℘333
) = 0. (6.13)

We can now eliminate the symmetric functions s(1), s(2) and s(3) in (6.7). From the first
relation we obtain

h24℘333 − h34℘233 + h44(℘223 − ℘133) − h54λ = 0

h25℘333 − h35℘233 + h45(℘223 − ℘133) − h55λ = 0,
(6.14)

where λ is an undetermined multiplier.
Since these identities are polynomial in the ℘ijk and the hij only they must belong to a

finite-dimensional representation of sl2(C). Application of the e and f operators must generate
further identities. This can only work for a special value of λ and application of e to the second
of the above identities shows that it will be a highest weight element (in the kernel of e) only
if λ = ℘222 − 2℘123. Hence we have

h24℘333 − h34℘233 + h44(℘223 − ℘133) − h54(℘222 − 2℘123) = 0

h25℘333 − h35℘233 + h45(℘223 − ℘133) − h55(℘222 − 2℘123) = 0.
(6.15)

We label the second of these identities P9(0) because it is highest weight for a nine-
dimensional representation generated by repeated application of f, a set of nine linearly
independent identities P9(i) for i = 0, . . . , 8. The last of these identities is

P9(8) = h11(℘222 − 2℘123) − h12(℘122 − ℘113) + h13℘112 − h14℘111 = 0. (6.16)

Rather than write these out in detail now we shall summarize them in a more compact
form shortly.

Now from a linear combination of the first of the identities (6.15) and P9(1) we can form
the highest weight identity for a seven-dimensional representation,

P7(0) = −4h15℘333 + 4h35℘133 − h45(2℘123 + ℘222) + 4h55(℘122 − ℘113)

−h34℘233 + h24℘333 − h44(℘133 − ℘223). = 0. (6.17)

Proceeding in this way with the other identities obtained from eliminating the symmetric
functions from the other identities in (6.7), we obtain representations P5, P3 and P1, giving a
total of 9 + 7 + 5 + 3 + 1 = 52 relations linear in the three index symbols.

These identities are not presented in the simplest form however. They can be rendered
more transparent by taking various linear combinations so that one only ever has four h terms
arising in each identity. We do not give the details here because it involves routine linear
algebra applied to the above identities, best accomplished using a computer algebra package.
The fact that this simplification is possible, however, is of significance and it not clear to the
present author exactly why it should be so.

After this rearrangement the identities take the form of a matrix product

hA = 0 (6.18)

12
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of the symmetric 5 × 5 matrix h and an antisymmetric 5 × 5 matrix

A =

⎡
⎢⎢⎢⎢⎣

0 −℘333 ℘233 −℘223 + ℘133 ℘222 − 2℘123

℘333 0 −℘133 ℘123 −℘122 + ℘113

−℘233 ℘133 0 −℘113 ℘112

℘223 − ℘133 −℘123 ℘113 0 −℘111

−℘222 + 2℘123 ℘122 − ℘113 −℘112 ℘111 0

⎤
⎥⎥⎥⎥⎦ . (6.19)

One checks that the matrix A has rank at most 3 by virtue of relations (6.11) obtained
earlier. In fact the 4 × 4 minors of A are products of the P5(i),

A(i, j) = P5(5 − i)P5(5 − j). (6.20)

Further the 3 × 3 minors also have the P5(i) as factors. There are however non-vanishing
2 × 2 minors so the rank of A is exactly 2.

Consequently the five-by-five matrix h has exactly a two-dimensional zero eigenspace and,
being symmetric, must be similar to a diagonal matrix of form hD = Diag(0, 0, h3, h4, h5).

We can use this fact to obtain identities quadratic in the ℘ijk by generalizing the argument
in the genus-two case as follows.

Let 	 be the matrix which diagonalizes h, let l and k be arbitrary five component column
vectors, I2 the two-by-two identity matrix and consider∣∣∣∣∣∣
[
	T 0
0 I2

]⎡
⎣ h l k

lT 0 0
kT 0 0

⎤
⎦ [

	 0
0 I2

]∣∣∣∣∣∣ =
∣∣∣∣∣∣
⎡
⎣ hD 	T l 	T k

lT	 0 0
kT	 0 0

⎤
⎦

∣∣∣∣∣∣
= h3h4h5

∣∣∣∣
[

(	T l)1 (	T l)2

(	T k)1 (	T k)2

]∣∣∣∣
2

. (6.21)

Now consider

lT Ak = lT 	AD	T k

= α

∣∣∣∣
[

(	T l)1 (	T l)2

(	T k)1 (	T k)2

]∣∣∣∣ , (6.22)

where AD is the normal form of A

AD =

⎡
⎢⎢⎢⎢⎣

0 α 0 0 0
−α 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ (6.23)

corresponding to the diagonal form of h.
Combining these observations we obtain the attractive formula

(lT Ak)2 = λ

∣∣∣∣∣∣
h l k

lT 0 0
kT 0 0

∣∣∣∣∣∣ , (6.24)

where λ is a function yet to be determined.
The undetermined factor can be found from a (simple) singularity argument and also by

a more involved, algebraic expansion and as for genus two we will present the latter.

13
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We return to the original relation on the curve for y1 of degree 8 in x1. By substituting for
y1 we obtain a sextic in x1 from which we eliminate the degree 6 and 5 terms using the cubic
expression (6.12). The resulting quartic identity in x1 has leading term

℘2
333 +

1

4

∣∣∣∣∣∣
h33 h34 h35

h43 h44 h45

h53 h54 h55

∣∣∣∣∣∣ . (6.25)

Hence λ = − 1
4 in the full quadratic identity

(lT Ak)2 = −1

4

∣∣∣∣∣∣
h l k

lT 0 0
kT 0 0

∣∣∣∣∣∣ . (6.26)

This formula is a new result of this paper.

7. Identities for ℘ijkl

In all three cases discussed above there are identities for the four index ℘-functions of the
form

℘ijkl = F(℘11, ℘12, ℘22, ℘13, . . .) (7.1)

that are obtained by differentiating the identities quadratic in the ℘ijk and (for genus two and
three) using certain identities involving two and three index ℘-functions.

Clearly in genus one we get

℘ ′′ = 6℘2 − 1
2

(
a0a4 − 4a1a3 + 3a2

2

)
(7.2)

recalling that the two index ℘-function is written as ℘ in this case.
In genus two we start with the identity for ℘2

222. Differentiating,

−8℘222℘2222 =
∣∣∣∣∣∣

4℘112 h23 h24

2℘122 h33 h34

−2℘222 h43 h44

∣∣∣∣∣∣ +

∣∣∣∣∣∣
h22 2℘122 h24

h32 4℘222 h34

h42 0 h44

∣∣∣∣∣∣ +

∣∣∣∣∣∣
h22 h23 −2℘222

h32 h33 0
h42 h43 0

∣∣∣∣∣∣
= 4℘112

∣∣∣∣h33 h34

h43 h44

∣∣∣∣ + 4℘122

∣∣∣∣h32 h34

h42 h44

∣∣∣∣ + 4℘222

(
−

∣∣∣∣h23 h24

h33 h34

∣∣∣∣ +

∣∣∣∣h22 h24

h42 h44

∣∣∣∣
)

.

The first two terms on the right-hand side can be replaced by a single term with factor
℘222 by utilizing the identity

℘112

∣∣∣∣h3,3 h3,4

h4,3 h4,4

∣∣∣∣ + ℘122

∣∣∣∣h3,2 h3,4

h4,2 h4,4

∣∣∣∣ + ℘222

∣∣∣∣h3,1 h3,4

h4,1 h4,4

∣∣∣∣ = 0.

This, in turn, is obtained from the quadratic identity by setting li = hi+1,j to get four
identities of the form

h1,j℘222 − h2,j℘122 + h3,j℘112 − h4,j℘111 = 0 (7.3)

and eliminating ℘111 from the pair j = 3, 4. Thus

−℘2222 = 1

2

(
−

∣∣∣∣h2,3 h2,4

h3,3 h3,4

∣∣∣∣ +

∣∣∣∣h2,2 h2,4

h4,2 h4,4

∣∣∣∣ −
∣∣∣∣h3,1 h3,4

h4,1 h4,4

∣∣∣∣
)

× 1

3

(−℘2222 + 6℘2
22

) = a2a6 − 4a3a5 + 3a2
4 + a6℘11 − 2a5℘12 + a4℘22. (7.4)

Application of e and f to this identity shows that it is highest weight for a five-dimensional
representation reproducing the classic partial differential equations of Baker [7].

14
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The fully general, covariant genus-three equations have not been written before. We
proceed as before by differentiating the ℘2

333 relation with respect to u3,

−8℘333℘3333 =
∣∣∣∣∣∣
4℘223 − 4℘133 h34 h35

2℘233 h44 h45

−2℘333 h54 h55

∣∣∣∣∣∣ +

∣∣∣∣∣∣
h33 2℘233 h35

h43 4℘333 h45

h53 0 h55

∣∣∣∣∣∣ +

∣∣∣∣∣∣
h33 h34 −2℘333

h43 h44 0
h53 h54 0

∣∣∣∣∣∣
= 4(℘223 − ℘133)

∣∣∣∣h44 h45

h54 h55

∣∣∣∣ − 4℘233

∣∣∣∣h34 h35

h54 h55

∣∣∣∣
+ 4℘333

(∣∣∣∣h33 h35

h53 h55

∣∣∣∣ −
∣∣∣∣h34 h35

h44 h45

∣∣∣∣
)

.

As before we can derive identities linear in the ℘ijk from the general quadratic identities.
Putting k0 = 1, k1 = k2 = k3 = k4 = 0 and li = hi+1,j , i = 0, . . . , 4 gives, for any choice
of j ,

h2j℘333 − h3j℘233 + h4j (℘223 − ℘133) − h5j (℘222 − 2℘123) = 0. (7.5)

Eliminating the ℘222 − 2℘123 term between the cases j = 4 and j = 5 yields

(℘223 − ℘133)

∣∣∣∣h44 h45

h54 h55

∣∣∣∣ − ℘233

∣∣∣∣h34 h35

h54 h55

∣∣∣∣ + ℘333

∣∣∣∣h24 h25

h54 h55

∣∣∣∣ = 0. (7.6)

Use of this identity in the equation for ℘333℘3333 gives

−2℘3333 = −
∣∣∣∣h24 h25

h54 h55

∣∣∣∣ +

∣∣∣∣h33 h35

h53 h55

∣∣∣∣ −
∣∣∣∣h34 h35

h44 h45

∣∣∣∣ (7.7)

and thus, by application of f, the nine-dimensional space of identities,

−℘3333 + 6℘2
33 = 10

(
a4a8 − 4a5a7 + 3a2

6

)
+ 8a6℘33 − 8a7wp23 + a8(3℘22 − 4℘13)

−℘2333 + 6℘23℘33 = 10(a3a8 − 3a4a7 + 2a5a6) + 12a5℘33 − 10℘23

+ 4a7(℘22 − 3℘13) + 2a8℘12

2(−℘1333 + 6℘13℘33) + 3
(−℘2233 + 2℘22℘33 + 4℘2

23

) = 10
(
3a2a8 − 4a3a7 − 11a4a6 + 12a2

5

)
+ 60a4℘33 − 36a5℘23 − 2a6(9℘22 − 52℘13) + 20a7℘12 + 4a8℘11

−℘2223 + 6℘22℘23 + 3(−℘1233 + 2℘12℘33 + 4℘13℘23) = 10(a1a8 + 2a2a7 − 12a3a6 + 9a4a5)

+ 40a3℘33 − 10a4℘23 + 4a5(3℘22 − 29℘13) + 18a6℘12 + 12a7℘11

−℘2222 + 6℘2
22 + 6(−℘1133 + 2℘11℘33 + 4℘2

13) + 12(−℘1223 + 4℘12℘23 + 2℘13℘22)

= 10(a0a8 + 12a1a7 − 22a2a6 − 36a3a5 + 45a2
4 + 120a2℘33 + 40a3℘23

+ 50a4(℘22 − 12℘13) + 40a5℘12 + 120a6℘11

−℘1222 + 6℘12℘22 + 3(−℘1123 + 4℘12℘13 + 2℘11℘23) = 10(a0a7 + 2a1a6 − 12a2a5 + 9a3a4)

+ 12a1℘33 + 18a2℘23 + 4a3(3℘22 − 29℘13) − 10a4℘12 + 40a5℘11

2(−℘1113 + 6℘11℘13) + 3
(−℘1122 + 2℘11℘22 + 4℘2

12

) = 10
(
3a0a6 − 4a1a5 − 11a2a4 + 12a2

3

)
+ 4a0℘33 + 20a1℘23 + 2a2(9℘22 − 52℘13) − 36a3℘12 + 60a4℘11

−℘1112 + 6℘11℘12 = 10(a0a5 − 3a1a4 + 2a2a3) + 2a0℘23

+ 4a1(℘22 − 3℘13) − 10a2℘12 + 12a3℘11

−℘1111 + 6℘2
11 = 10

(
a0a4 − 4a1a3 + 3a2

2

)
+ a0(3℘22 − 4℘13) − 8a1℘12 + 8a2℘11.

15



J. Phys. A: Math. Theor. 41 (2008) 415202 C Athorne

Given that there are 15 of the symbols ℘ijkl we expect to be able to find a further six
identities.

Thus, returning to the ℘2
333 identity and differentiating with respect to u1 this time yields

−8℘333℘1333 =
∣∣∣∣∣∣
4℘122 − 4℘113 h34 h35

2℘123 h44 h45

−2℘133 h54 h55

∣∣∣∣∣∣ +

∣∣∣∣∣∣
h33 2℘123 h35

h43 4℘133 h45

h53 0 h55

∣∣∣∣∣∣ +

∣∣∣∣∣∣
h33 h34 −2℘333

h43 h44 0
h53 h54 0

∣∣∣∣∣∣
= 4(℘122 − ℘113)

∣∣∣∣h44 h45

h54 h55

∣∣∣∣ − 4℘123

∣∣∣∣h34 h35

h54 h55

∣∣∣∣
+ 4℘133

(∣∣∣∣h33 h35

h53 h55

∣∣∣∣ −
∣∣∣∣h34 h35

h44 h45

∣∣∣∣
)

.

This time some appropriate identities arise by choosing k0 = 0, k1 = 1, k2 = 0, k3 = 0
and k4 = 0 and the li as before

hij℘333 − h3j℘133 + h4j℘123 − h5j (℘122 − ℘113) = 0. (7.8)

These allow us to replace the terms on the right-hand side of the ℘1333 equation by terms
involving ℘333 and so factor this out to leave

−2℘1333 = −
∣∣∣∣h14 h15

h44 h45

∣∣∣∣ +

∣∣∣∣h13 h53

h15 h55

∣∣∣∣ . (7.9)

Applying e to this identity gives the ℘2333 identity found above. Successive applications of f

however yield a set of seven identities,

−℘1333 + 6℘13℘33 = 3a2a8 − 8a3a7 + 5a4a6 + 3a4℘33 − 10a6℘13 + 4a7℘12 − a8℘11

−℘1233 + 2℘12℘33 + 4℘13℘23 = 2a1a8 − 12a3a6 + 10a4a5 + 4a3℘33 + 2a4℘23

− 20a5℘13 + 6a6℘12

−℘1133 + 2℘11℘33 + 4℘2
13−℘1223 + 2℘13℘22 + 4℘12℘23 = a0a8 + 8a1a7 − 18a2a6 − 16a3a5

+ 25a2
4 + 6a2℘33 + 8a3℘23 + a4(℘22 − 48℘13) + 8a5℘12 + 6a6℘11

−℘1222 + 6℘12℘22 + 6(−℘1123 + 2℘11℘23 + 4℘12℘13) = 16a0a7 + 20a1a6 − 156a2a5

+ 120a3a4 + 12a1℘33 + 36a2℘23 + 4(3a3℘22 − 44℘13) − 4a4℘12 + 52a5℘11

−℘1113 + 6℘11℘12 − ℘1122 + 2℘11℘22 + 4℘2
12 = 11a0a6 − 16a1a5 − 35a2a4 + 40a2

3

+ a0℘33 + 8a1℘23 + 2a2(3℘22 − 19℘13) − 12a3℘12 + 21a4℘11

−℘1112 + 6℘11℘12 = 10(a0a5 − 3a1a4 + 2a2a3) + 2a0℘23 + 4a1(℘22 − 3℘13)

− 10a2℘12 + 12a3℘11

−℘1111 + 6℘2
11 = 10

(
a0a4 − 4a1a3 + 3a2

2

)
+ a0(3℘22 − 4℘13) − 8a1℘12 + 8a2℘11.

Of these seven the last two are already represented in the previous set so that we still seek
another one. To find this go to the quadratic identity for ℘133,

−℘2
133 = 1

4

∣∣∣∣∣∣
h11 h14 h15

h41 h44 h55

h51 h54 h55

∣∣∣∣∣∣ (7.10)

and differentiate with respect to u1. Using similar identities to before we find

−2℘1133 =
∣∣∣∣h1,1 h1,5

h5,1 h5,5

∣∣∣∣ −
∣∣∣∣h1,4 h1,5

h2,4 h2,5

∣∣∣∣ (7.11)
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and applying f successively arrive at

2(−℘1133 + 6℘2
13) + 4(℘23℘12 − ℘13℘22) = a0a8 − 16a3a5 + 15a2

4 + 8a3℘23

− 2a4(℘22 + 12℘13) + 8a5℘12

−℘1123 + 4℘12℘13 + 2℘23℘11 = 2a0a7 − 12a2a5 + 10a3a4 + 6a2℘23

− 20a3℘13 + 2a4℘12 + 4a5℘11

−℘1122 + 2℘11℘22 + 4℘2
12 + 2(−℘1113 + 6℘11℘13) = 14a0a6 − 24a1a5 − 30a2a4 + 40a3

3

+ 12a1℘23 + 6a2(℘22 − 8℘13) − 12a3℘12 + 24a4℘11

−℘1112 + 6℘11℘12 = 10a0a5 − 30a1a4 + 20a2a3 + 2a0℘23 + 4a1(℘22 − 3℘13)

− 10a2℘12 + 12a3℘11

−℘1111 + 6℘2
11 = 10a0a4 − 40a1a3 + 30a2

2 + a0(3℘22 − 4℘13) − 8a1℘12 + 8a2℘11.

Only one of these is linearly independent of the identities we already have.
In appendix A we summarize these identities and in appendix B we compare them with the

original, non-covariant identities of Baker [6], showing that they are equivalent under a simple
transformation. To this end the identities in appendix A are written in a Baker friendly form
where each involves but one of the four index objects. This is not ideal from the representation
theoretic viewpoint however, as the identities then do not fall naturally into multiplets.

8. Conclusions

This paper establishes that the use of covariant methods for hyperelliptic curves is a practical
tool in the construction and understanding of the partial differential equations satisfied by the
℘-function. In order to do so the definition of the ℘ function has to be slightly modified in a
way that does not alter its analytic properties. The resulting covariant identities for the ℘ijk

and ℘ijkl (appendix A) differ in detail from those obtained by Baker (appendix B) but are
generic and are derived in a straight forward, economical way with minimal use of computer
algebra and in an algorithmic manner. Because the equivalence of the two sets of equations
is by no means self-evident we also specify in appendix B the transformation between the
two definitions of the ℘ij . Given Baker’s equations one could have written the covariant
genus-three equations by deducing this simple transformation by comparing the classical and
covariant polar forms. But this would not have been a test of the machinery nor would it have
provided us with the neat expression for the quadratic, genus-three identities.

By ‘minimal use of computer algebra’ we mean that the derivation of the highest weight
identities was carried out by hand. A computer algebra programme was used to implement
the actions of e and f on these highest weight identities in order to check covariance and to
generate the full sets of identities. The other use of computer algebra, as remarked at the time,
was in rearranging by linear superposition, the identities linear in the ℘ijk in the genus-three
case, into the form (6.18).

It may be remarked that Baker’s equations are a little simpler than the covariant ones.
From the current point of view this is a simplification bought at the expense of the more abstract
simplification which incorporates the representation theory. The drawback of the simplicity
is that each identity has to be obtained independently. The advantage of the marginally more
involved covariant set is that the 15 identities for the ℘ijkl decompose into sets of nine, five
and one elements from each of which one need only find a single identity using the singularity
analysis, the others following by application of the raising and lowering operators, e and f.

Further, the representation theory lays bare a pattern of bones with further intriguing
symmetries that beg further study, particularly in view of the σ function and hyperelliptic
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addition laws. However, the most pressing issue now is to apply these methods to the more
difficult non-hyperelliptic curves of low genus.
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Appendix A

Here we summarize the four-index relations for the covariant ℘-function in the genus-three
case. � denotes a quadratic in two index functions: � = ℘11℘33 − ℘12℘23 − ℘2

13 + ℘13℘22.

−℘3333 + 6℘2
33 = 8a6℘33 − 8a7℘23 + a8(3℘22 − 4℘13) + 10

(
a4a8 − 4a5a7 + 3a2

6

)
−℘2333 + 6℘23℘33 = 12a5℘33 − 10a6℘23 + 4a7(℘22 − 3℘13) + 2a8℘12

+ 10(a3a8 − 3a4a7 + 2a5a6)

−℘2233 + 4℘2
23 + 2℘22℘33 = 18a4℘33 − 12a5℘23 + 2a6(3℘22 − 14℘13) + 4a7℘12 + 2a8℘11

+ 8
(
a2a8 − a3a7 − 5a4a6 + 5a2

5

)
−℘2223 + 6℘22℘23 = 28a3℘33 − 16a4℘23 + 4a5(3℘22 − 14℘13) + 12a7℘11

+ 4(a1a8 + 5a2a7 − 21a3a6 + 15a4a5)

−℘2222 + 6℘2
22 − 12� = 48a3℘33 − 32a3℘23 + 32a4(℘22 − 3℘13) − 32a5℘12

+ 48a6℘11a0a8 + 24a1a7 − 4a2a6 − 216a3a5 + 195a2
4

−℘1333 + 6℘13℘33 = 3a4℘33 − 10a6℘13 + 4a7℘12 − a8℘11 + 3a2a8 − 8a3a7 + 5a4a6

−℘1233 + 4℘13℘23 + 2℘12℘33 = 4a3℘33 + 2a4℘23 − 20a5℘13 + 6a6℘12

+ 2(a1a8 − 6a3a6 + 5a4a5)

−℘1223 + 4℘12℘23 + 2℘13℘22 + 2� = 6a2℘33 + 4a3℘23 + 2a4(℘22 − 18℘13) + 4a5℘12

+ 6a6℘11 + 1
2

(
a0a8 + 16a1a7 − 36a2a6 − 16a3a5 + 35a2

4

)
−℘1222 + 6℘12℘22 = 12a1℘33 + 4a3(3℘22 − 14℘13) − 16a4℘12 + 28a5℘11

+ 4(a0a7 + 5a1a6 − 21a2a5 + 15a3a4)

−℘1133 + 4℘2
13 + 2℘11℘33 − 2� = 4a3℘23 − a4(℘22 − 12℘13) + 4a5℘12

+ 1
2

(
a0a8 − 16a3a5 + 15a2

4

)
−℘1123 + 4℘12℘13 + 2℘11℘23 = 6a2℘23 − 20a3℘13 + 2a4℘12 + 4a5℘11

+2(a0a7 − 6a2a5 + 5a3a4)

−℘1122 + 4℘2
12 + 2℘11℘22 = 2a0℘33 + 4a1℘23 + 2a2(3℘22 − 14℘13) − 12a3℘12 + 18a4℘11

+ 8
(
a0a6 − a1a5 − 5a2a4 + 5a2

3

)
−℘1113 + 6℘11℘13 = −a0℘33 + 4a1℘23 − 10a2℘13 + 3a4℘11 + 3a0a6 − 8a1a5 + 5a2a4

−℘1112 + 6℘11℘12 = 2a0℘23 + 4a1(℘22 − 3℘13) − 10a2℘12 + 12a3℘11

+ 10(a0a5 − 3a1a4 + 2a2a3)

−℘1111 + 6℘2
11 = a0(3℘22 − 4℘13) − 8a1℘12 + 8a2℘11 + 10

(
a0a4 − 4a1a3 + 3a2

2

)
18
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Appendix B

Here we reproduce the genus-three equations from Baker’s paper [6]. We will denote by ℘B

the traditional genus-three ℘-function. For ease of comparison we have also rewritten the λi

coefficients of the monomials in x in the octic curve in Baker’s paper in terms of the ai used
above.

℘B
3333 − 6℘B2

33 = 28a6℘
B

33 + 8a7℘
B

23 + a8
(
4℘B

13 − 3℘B
22

) − 35a4a8 + 56a5a7

℘B
2333 − 6℘B

23℘
B

33 = 28a6℘
B

23 + 4a7
(
3℘B

13 − ℘B
22

)
+ 2a8℘

B
12 − 14a3a8

℘B
2233 − 4℘B2

23 − 2℘B
22℘

B
33 = 28a5℘

B
23 + 28a6℘

B
13 − 4a7℘

B
12

− 2a8℘
B

11 − 14a2a8

℘B
2223 − 6℘B

22℘
B

23 = −28a3℘
B

33 + 7 − a4℘
B

23 + 56a5℘
B

13 − 12a7℘
B

11

−4a1a8 − 56a2a7

℘B
2222 − 6℘B2

22 − 12� = −84a2℘
B

33 + 56a3℘
B

23 + 70a4℘
B

22 + 56a5℘
B

12 − 84a6℘
B

11

− 392a2a6 + 392a3a5

℘B
1333 − 6℘B

13℘
B

33 = 28a6℘
B

13 − 4a7℘
B

14 + a8℘
B

11

℘B
1233 − 4℘B

13℘
B

23 − 2℘B
12℘

B
33 = 28a5℘

B
13 − 2a1a8

℘B
1223 − 4℘B

12℘
B

23 − 2℘B
13℘

B
22 + 2� = 70a4℘

B
13 − 8a1a7 − 1

2a0a8

℘B
1222 − 6℘B

12℘
B

22 = −12a1℘
B

33 + 56a3℘
B

13 + 70a4℘
B

12 − 28a5℘
B

11

− 112a1a6 − 4a0a7

℘B
1133 − 4℘B2

13 − 2℘B
11℘

B
33 − 2� = − 1

2a1a8

℘B
1123 − 4℘B

12℘
B

13 − 2℘B
11℘

B
23 = 28a3℘

B
13 − 2a0a7

℘B
1122 − 4℘B2

12 − 2℘B
11℘

B
22 = −2a0℘

B
33 − 4a1℘

B
23 + 28a2℘

B
13

+ 28a3℘
B

12 − 14a0a6

℘B
1113 − 6℘B

11℘
B

13 = a0℘
B

33 − 4a1℘
B

23 + 28a2℘
B

13

℘B
1112 − 6℘B

11℘
B

12 = −2a0℘
B

23 + 4a1
(
3℘B

13 − ℘B
22

)
+ 28a2℘

B
12 − 14a0a5

℘B
1111 − 6℘B2

11 = a0
(
4℘13 − 3℘B

22

)
+ 8a1℘

B
12 + 28a2℘

B
11 − 35a0a4 + 56a1a3

The Baker equivalent of the 5 × 5 matrix h we will call hB and since our covariant form
is to be replaced by the classical polar form hB will be given by⎡
⎢⎢⎢⎢⎣

a0 4a1 −2℘B
11 −2℘B

12 −2℘B
13

4a1 28a2 + 4℘B
11 28a3 + 2℘B

12 −2℘B
22 + 4℘B

13 −2℘B
23

−2℘B
11 28a3 + 2℘B

12 70a4 + 4℘B
22 − 4℘B

13 28a5 + 2℘B
23 −2℘B

33

−2℘B
12 −2℘B

22 + 4℘B
13 28a5 + 2℘B

23 28a6 + 4℘B
33 4a7

−2℘B
13 −2℘B

23 −2B33 4a7 a8

⎤
⎥⎥⎥⎥⎦ .

(B.1)

Consequently,

℘B
11 = ℘11 − 3a2 ℘B

12 = ℘12 − 2a3 ℘B
13 = ℘13 − 1

2a4

℘B
22 = ℘22 − 9a4 ℘B

23 = ℘23 − 2a5 ℘B
33 = ℘33 − 3a6.

(B.2)

Substitution for either ℘ or ℘B does indeed transform the two sets of equations into one
another.
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